[TIL] 0805 아침스터디 - 나이브 베이즈 복습
Naive Bayes란? 원리 - 베이즈 정리 베이즈 정리란, 사전확률과 사후확률의 관계를 나타내는 정리이다. 사전확률은, 특정 사건이 일어나기 전에 우리가 구하고자 하는 사건의 확률을 의미한다. (예시 - 어떤 질병에 걸릴 확률) 여기에 증거, 즉 추가적인 조건을 붙힌다면, 이 때 확률은 어떻게 될지를 구하는 것이, 베이즈 정리이다. 다시 말해, A -> B라는 관계가 있을 때, B가 일어날 확률만 아는데, , B가 일어날 확률을 구하는 것이 베이즈 정리의 목표이다. 다음과 같이, 조건부 확률 형태로 얻을 수 있다. 작동 원리 기본적으로, 나이브 베이즈는 feature끼리는 서로 독립이어야 한다. 독립을 가정하게 되면 좋은 점은, 여러 특성들을 가졌을때, 그 확률의 ..
2022. 8. 5.
[TIL] 0729 아침스터디 - Kernel Trick
들어가기 분류 문제에서, 선형 분류로 풀 수 없는 상황이 여럿 존재할 것이다. 이를 해결 할 수 있는 방법 중 하나가 Kernel Trick이다. 다음과 같이, 일차원 상에, 데이터가 놓여있다고 하자, 초록색 데이터와 파란색 데이터는 선분 하나만으로는 구분할 수 없다. 하지만, 여기에 차원을 추가하면 어떻게 될까? 즉 x -> {x, x^2} 으로 보내는 mapping을 고려하자. 2차원으로 보낸 순간, 빨간 구분선을 기준으로, 초록색 데이터와 파란색 데이터의 구분이 가능해졌다. 이렇게 쉬운 상황만 고려하면, 좋을텐데, 문제는 일반적으로는 mapping 이 되는 함수를 찾기가 매우 어렵다는 것이다. Kernel이란? Kernel 이란, mapping 이후에도 "내적"의 값을 유지시켜주는 함수를 의미힌다...
2022. 7. 29.